SERVO FEED WITH CUT-TO-LENGTH OPERATING INSTRUCTIONS

MODELS

100, 200 & 300 SERIES
SERVO CUT - TO - LENGTH
TYPICAL LAYOUT THROUGH 100 SERIES

STOCK CUTTER
CUTTER ENTRANCE STOCK GUIDE (2)
MATERIAL TENSION ADJUSTMENT
SERVO FEED MOTOR
SERVO ENTRANCE STOCK GUIDE (2)
SYSTEM KEYPAD
DISCONNECT 230 VAC 3PH ONLY

CUTTER EXIT COVER
PASS LINE HEIGHT
CUTTER BLADES
CUTTER ENTRANCE COVER
CUTTER BLADE ADJUSTMENT KNOB

AIR INLET FOR PILOT RELEASE VALVE
GEAR BOX
MASTER START/STOP
230 VAC
MASTER ON/OFF
120 VAC

CTL STAND
ELECTRICAL CONTROL PANEL
Congratulations on purchasing a Rapid-Air Servo Cut-To-Length. Not only did you receive a complete servo unit but also telephone support by one of our engineering staff to guide you on using the new servo to its maximum capability.

In order to maximize your learning time and trouble shoot any interface problems, we would like to request that the following items be complete before calling us:

1. Servo unit should be completely installed and aligned to a die on the press.

2. 220 Vac electrical wiring should be in place and unit turned on.

3. All interface switches should be wired and tested.

4. Air if needed should be connected and ready to be used.

5. All servo interface questions should be directed to Rapid Air prior to a start-up visit. Please call 815-397-2578 and ask to have these questions directed to the proper personnel.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARTS AND DRAWINGS DIRECTORY</td>
<td>4</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>6</td>
</tr>
<tr>
<td>ELECTRICAL CABLES AND AIR LINE</td>
<td>7</td>
</tr>
<tr>
<td>INTERFACING SERVO FEED WITH CUTTER</td>
<td>8</td>
</tr>
<tr>
<td>PRETEST WRITE UP</td>
<td>9</td>
</tr>
<tr>
<td>LOADING MATERIAL</td>
<td>10</td>
</tr>
<tr>
<td>SERVO INTERFACING EXPLANATION</td>
<td>11</td>
</tr>
<tr>
<td>PROGRAMMING PROCEDURE</td>
<td>15</td>
</tr>
<tr>
<td>DRIVE ROLL PARALLELISM ADJ.</td>
<td>21</td>
</tr>
<tr>
<td>TROUBLESHOOTING</td>
<td>22</td>
</tr>
<tr>
<td>OPERATIONAL MAINTENANCE PROCEDURES</td>
<td>24</td>
</tr>
<tr>
<td>PRECAUTIONS AND SAFETY</td>
<td>28</td>
</tr>
<tr>
<td>WARRANTY</td>
<td>29</td>
</tr>
</tbody>
</table>
CHARTS AND DRAWINGS

<table>
<thead>
<tr>
<th>Drawing</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAN 100 SERIES</td>
<td>30</td>
</tr>
<tr>
<td>PLAN 200 SERIES</td>
<td>31</td>
</tr>
<tr>
<td>PLAN 300 SERIES</td>
<td>32</td>
</tr>
<tr>
<td>ELECTRICAL PANEL LAYOUT</td>
<td>33</td>
</tr>
<tr>
<td>OPERATORS TERMINAL LAYOUT</td>
<td>34</td>
</tr>
<tr>
<td>INTERFACE SCHEMATICS - 953</td>
<td>35</td>
</tr>
<tr>
<td>INTERFACE SCHEMATICS - 953</td>
<td>36</td>
</tr>
<tr>
<td>INTERFACE SCHEMATICS– 953 120 VAC</td>
<td>37</td>
</tr>
<tr>
<td>CUTTER MAINTENANCE</td>
<td>38</td>
</tr>
<tr>
<td>CUTTER BASE LAYOUTS</td>
<td>39</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Rapid Air Servo Cut-To-Length Feed system carries with it the quality and reliability you have grown to expect from a Rapid Air product. The motion control system is a programmable industrial computer and this advanced technology, combined with a highly engineered precision roll feed, is an unchallenged combination in the press industry.

The compact mechanical package, direct coupled with a brushless servo drive motor, offers response and feed speed accuracy unparalleled in any other powered roll feed. Operator interface is so simplified, a typical setup person can have the servo feed programmed and running in a matter of minutes. A step by step prompt appears on a four line 88-character display, which asks simple questions of the operator. Entry of feed length, cutter dwell time, and % maximum speed are all that is required for a new setup. Routine jobs can be stored, recalled, changed and saved or run with a simple 2 digit job number entry. Up to 99 jobs may be stored and recalled at will.

A resolver, direct coupled to the servo drive motor for precise digital position feedback, enable roll positioning accuracy to +/- .0025 for any programmed feed length or speed.

Operator programmed feed length, up to 999.999 inches and % max speed selection along with full jog features on a pendant unit, allow the operator to thread the material and inch it into position. The inch feature enables the operator to jog the servo feed forward or reverse at a slow rate. The operator can select jog to length or jog continuous to aid in threading up material.

The Rapid Air Servo Roll Feed has been designed to mount on a free-standing table as close as possible to the cutter.

The precision mechanical roll feed unit has been designed for compactness, ease of setup and installation. Three cables with twist lock connectors, two cables for the servo, one connected to the cutter, and one air line are the only external connections required. The electrical controls are housed in a small cabinet which should be mounted close to the press working area. The operator keypad and display are mounted on top of the control cabinet.
INSTALLATION AND MECHANICAL SETUP OF SERVO AND CUTTER

If you purchased the servo/cutter combination already mounted on a base then the servo and cutter were aligned at the factory. A good practice is to check all hold down bolts to be sure that they did not come loose during shipment.

If you purchased the servo and cutter and are going to mount it on a base at your facility, then a base should be selected that will hold the weight of the servo and the cutter and also the cycling shocks incurred during production.

When mounting the two devices. The pass line height of the cutter and the servo roller center line should be equal. Even more critical is the parallelism between the two devices. The cutter should be mounted first then the servo center line should be aligned to the cutter center line with the servo rollers parallel to the cutter blade.

The servo should be mounted as close to the cutter as possible and depending on thickness of the material a bridge should be installed between the servo and cutter to minimize material droop or buckling during feed.

Although the cutter and servo weights can be located in other sections of the manual. The following is a list of the weights.

Servo

<table>
<thead>
<tr>
<th>Model</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>78 lbs.</td>
</tr>
<tr>
<td>108</td>
<td>87 lbs.</td>
</tr>
<tr>
<td>112</td>
<td>101 lbs.</td>
</tr>
<tr>
<td>118</td>
<td>115 lbs.</td>
</tr>
<tr>
<td>204</td>
<td>119 lbs.</td>
</tr>
<tr>
<td>208</td>
<td>159 lbs.</td>
</tr>
<tr>
<td>212</td>
<td>187 lbs.</td>
</tr>
<tr>
<td>218</td>
<td>203 lbs.</td>
</tr>
<tr>
<td>306</td>
<td>241 lbs.</td>
</tr>
<tr>
<td>312</td>
<td>312 lbs.</td>
</tr>
<tr>
<td>318</td>
<td>339 lbs.</td>
</tr>
<tr>
<td>336</td>
<td>493 lbs.</td>
</tr>
</tbody>
</table>

Cutter

- 4" Cutter—47 lbs.
- 6" Cutter—72 lbs.
- 8" Cutter—110 lbs.
- 12" Cutter—213 lbs.

The unit is now assembled and the next step is to attach the electrical and air lines to the servo and cutter.
ELECTRICAL CABLES AND AIR LINE

120 VAC INPUT
The alternate input voltage to the control is 120 Vac, 1 Ph, 60 Hz. The max amperage needed is 7.5 amps and the control has a circuit breaker with a trip amperage of 10 amps.

230 VAC INPUT
The required input voltage to the control is 230 Vac, 3 Ph, 60 Hz. The amperage needed is 10-20 amps depending on the motor size. If unsure of the amperage needed, the name plate on the side of the Pacific Scientific drive will give the number of the control or check the disconnect fuses for the correct fuse size.

460 VAC INPUT
If your plant has only 460 Vac power then a step down transformer is needed in order to run the servo feed. If you purchased the transformer from Rapid Air, then all that is needed is to connect and wire the 460 volt line to the transformer. If you did not purchase a transformer from Rapid Air then a transformer, 3 KVA for the 100S and 200S servos and 6KVA for the 300S servos, 460/230 VAC 3PH, 60HZ step down transformer is needed before proceeding with the electrical portion of the installation.

The electrical control enclosure is shipped completely ready to be connected to the mechanical feed. Connected to the bottom of the enclosure are (2) cables with keyed screw type connectors for connection to the motor. If the series 200 or 300 was purchased, (1 or 2) push-on connectors for connection to the air valves for solenoid actuation of the pilot release and or anti-backup valve are included. The third connector is used to interface the cutter to the controls.

Position the electrical enclosure at a convenient location near the mechanical feed and attach the cables. The motor cables are easily identifiable by the amount of pins in the plugs. The solenoid cables if any can now be attached and checked for proper location when the feed is up and running.

An air line must be connected from the shop air to the air inlet of the servo feed. The air should be at least 80 PSI continuous and should be dry filtered and lightly lubricated for the best operation of the servo feed. The air inlet on the servo feed is a 3/8-18 NPT pipe tap. The minimum air line size requirement is 1/2”ID hose. - (2 CFM)
The Servo Drive unit is programmed to feed each time a signal is received from the cutter switch. The servo will feed one progression and wait for the next signal before it will feed again in automatic mode.

The command is in the form of a normally open contact from a proximity switch, located on the cutter and is activated when the cutter is returned.

If the feed/cutter was purchased complete then the interfacing was done for you. If not, then Rapid Air has provided wiring to a terminal block for interconnection purposes. The interface schematic provides the wire numbers and how to connect the cutter to the feed.

This completes the initial setup of the servo feed to the cutter or other device. The servo is now ready to run as intended.

If more complete interfacing is needed, please refer to the section (interfacing) in this manual for an explanation of inputs and outputs available.
Now that your servo/cutter combination is in place, and the cables have been attached, you can proceed with testing the unit. The first step is to turn on the main disconnect switch on the electrical enclosure. Next, at the operator's console, pull the power on-off button to the on position. The button should illuminate to indicate that there is power to the system.

The Pacific Scientific drive performs an initial sequence to check its internal program. At this time the display should show the Rapid Air screen for 5 seconds before starting the main setup program. If you are comfortable with programming a job then continue, if not, please refer to the “Programming Procedure” located in this manual.

Follow the programming sequence for the operators terminal to input parameters into job storage. Your servo feed has been fully tested before it was shipped to your facility and this procedure is merely a test to insure that all functions are still functional and the cables are properly seated.

Once you have programmed the required parameters, select the manual mode of operation. If the option of air regulated upper feed roll was purchased, check that the main air is at least 80 psi and check that the roll pressure gage is functional by adjusting the pressure up and down. This is accomplished by turning the pressure adjusting knob. If you did not purchase the air regulated roll option then check that you have enough tension on the material to avoid slipping during feeding. Open and close the feed and anti-backup rolls electrically and/or manually. Visually inspect that the rolls open and close as you press the appropriate keys on the keypad or when using the manual levers.

Select the “inch” function (F2 on keypad) on the manual mode screen. Visually check that the rolls rotate both forward and reverse with the corresponding key. The speed is preset to creep the rolls at a slow speed for manual positioning of the material.

CAUTION: Do not attempt to place your fingers or any foreign material into the rolls. Injury to the operator or damage to the servo rolls could result.

After you have verified that the rolls and air logic are operational, you can experiment with the single cycle moves. The procedure is outlined in the programming section of this manual.

After all the checks have been made and you feel comfortable with the programming of the servo controller, place the servo in automatic mode. Now cycle the press in either the inch, single stroke or continuous run, the servo feed should react upon the closure of the press window and signal and simulate a feed progression of material.
LOADING MATERIAL INTO THE SERVO FEED

Upon the satisfactory completion of all the tests, you should be ready to load a strip of material into the servo feed.

Step number one is to select the manual mode of operation on the operators console. Then choose “Operate Rolls”. This will allow you to open the feed rolls and anti-backup rolls to accept the material but only if you have purchased the option. You could also open the rolls manually by lifting the lever mounted on the side of the servo feed. Position the leading edge of the material with the center of the material near the center of the entry rolls. Adjust the edge guides on the cascade rolls to the proper width setting. Open the feed rolls and or anti-backup rolls. Hand feed the material into the servo unit until it protrudes out of the feed rolls and starts into the guide on the cutter. Close the anti-backup rolls (if purchased) to capture the material, then close the feed rolls.

Check the roller force pressure to be sure that there is enough pressure to prevent slippage but not too much to induce camber into the material. The pressure setting is the amount of force necessary to move the material into the press at the speed and feed programmed. You may find it necessary to readjust the force as you finalize the setup procedure. The amount of force needed will vary depending on the width and type of material being fed. Make a note of the final setting to aid in the setup of the servo feed the next time the same material is run.

You are now ready to begin testing the complete system under power. To check the progression, cycle the servo and cutter first in the manual mode then in the single cycle mode. If the progression is correct, no further adjustments are necessary. If the progression is either short or long, go to the troubleshooting chart and perform the sequences described there for inaccurate feeding, once the feed progression has been accurately set and the repeatability is satisfactory, you are ready for full automatic mode.
SERVO INTERFACING EXPLANATION

A. TAUT STOCK INPUT (J52) TBI-3)
This is a normally open contact from a switch or device that monitors the loop of material prior to the servo feed. When the material reaches a point that it trips the switch, a taut stock has been reached. This input, when received, immediately drops the automatic which stops the feed in progress. The material should be repositioned in the die before restarting the automatic sequence, as the progression was lost when the taut stock occurred.

This input also could be used as a “No Stock” switch that would monitor whether or not there is material available to feed.

B. ANTI-BACKUP INPUT (J52) TBI-4) (series 200 servos only)
Whether the anti-backup rolls were purchased with the unit or came on the unit standard, they can be activated to raise in the automatic cycle. The anti-backup rolls, by design, keep the material from sliding back during the pilot operation. They can become a hinderance if the material tends to walk to one side or the other during the feed cycle.

C. ENABLE INPUT (J4-Pin 5 & 6))
The enable input is shipped from the factory, jumpered, so that the Pac-Sci unit is ready to work after the initialization procedure is complete.

If it is desired that the servo controls are not functional until other equipment or safety source is activated then a normally open contact can be interfaced to this input. If at any time during the feed cycle the input changes state then the feed will stop at this position. If feeding stock, the reference will be lost and the stock will have to be manually repositioned to the correct location. The automatic cycle will be dropped and have to be restarted.
D. ENABLE OUTPUT (J52)TB2-22
This output must be tied to a solid state relay to interface to the outside world. The solid state relay must have a D.C. coil and should have a rating of 3-30 VDC. The Rapid-Air #69100165 is recommended for this application. This output is high whenever the enabled input is activated.

E. CUTTER OUTPUT (J52)TB2-21
This output must be tied to a solid state relay to interface to the outside world. The solid state relay must have a D.C. coil and should have a rating of 3-30 VDC. The Rapid-Air #69100165 is recommended for this application. This output goes high at the end of every feed cycle and stays high for programmed cut time before going low. To adjust this time, go to programming the job number and adjust the time needed for the cutter.

F. AUTOMATIC OUTPUT (J52)TB2-20
This output must be tied to a solid state relay to interface to the outside world. The solid state relay must have a D.C. coil and should have a rating of 3-30 VDC. The Rapid-Air #69100165 is recommended for this application. This output goes high whenever automatic is selected on the program panel. Any faults will cause the automatic output to go low.

H. KEYPAD AND DISPLAY INTERFACE (RS232 PORT)
The keypad/display is the interface between the operator and the resident program. The Pacific Scientific drive is purchased with a great many capabilities, none of which can be used unless a program is written to utilize these capabilities. Rapid-Air put a great deal of time making a program that is user friendly and yet gets the job done efficiently. We took all the questions and constructive criticism and came up with a program that would cover all the applications, yet be easy to interface and program by a customer.

If an operator reads the programming procedure in this manual and then reads the screen parameters listed as they are displayed and acts on them by inputting data as needed, the servo can be up and running in a very short time.
1. Select a job number.
2. Input or review parameter for that job number.
3. Thread up material in manual mode.
4. If properly interfaced, go into automatic mode.
RESET JOB PARAMETERS

The reset job parameters routing should be used with special caution. We incorporated it as a user function for two reasons.

The first reason is if a problem caused the displayed parameters to be garbled because of a program glitch, then by resetting the job parameters the problem could be cleared.

The second reason is if there were a number of different jobs in memory that were no longer required, then by resetting the job parameters, all the job numbers would be reset to their default values, which includes putting all zeros in the feed length and strokes per minute area of the program.

CAUTION!! CAUTION!! CAUTION!!
Keep a hard copy record of program numbers and data associated with them for reference if needed. If this function is used in a way other than what it was designed for then all previous data is lost and cannot be recovered.

To enter this function, turn off the program by depressing the master stop button. Turn on the program again and push and hold the “clear entry” key, once the program has started the following screen will be displayed.

**DEFAULT VALUE SETUP
PRESS F1 TO RESET TO DEFAULT VALUES, PRESS F4 TO IGNORE CHANGES

**Once F1 has been pressed then all data that had been entered will be reset.

PROGRAM NUMBER DISPLAY
Each servo unit that is shipped has a program number assigned to it. If a problem occurs and cannot be solved by reloading the program then you will be asked the program number associated with this servo.

To view the program number, press and hold the “back space” key during the power up sequence. The program number will be displayed for about 30 seconds. Please find and write down the program number in case it is needed in the future.
TO HELP YOU ENTER A JOB FROM THE KEYPAD LET’S CREATE AN EXAMPLE:

We will use a feed length of three inches and want to run the feed rate at 100 percent.

The main menu is currently displayed. First we select the job number and we will use job #1.
1. Press F1 to select the job number.
2. Enter job number “01” - press the F4 key when finished.
3. The job number screen shows two choices:
 A. F1 = program parameters. This choice is used if a job has already been programmed and you would like to adjust the parameters that were preset for the job or if entering a new job number.
 To move around in this screen, press the “enter” key in the lower right corner of the key pad. Once the feed length and strokes per minute are entered, then the F4 key to exit the screen. The program now calculates the accel/decel and speed for the parameters entered. At this time the “F4 key” review parameter should be used to check to be sure that you entered the correct parameters.
 B. F4 = don’t alter parameters. Run the job as previously entered
4. Press “F2” to select the manual mode.
 A. Press F1 to select the “inch” or jog mode. This mode will move the material slowly forward or reverse to position the material at its proper location. F2 being used for forward and F3 for reverse movement. Press F4 to leave the “inch” mode.
 B. Press F2 to select the “single feed” mode. At this time each press on the F1 key will rotate the rolls to move the material three inches, the feed length that was entered, at the same feed rate as the feed would move the material in the automatic mode. Press the F4 key {exit} to leave this screen.
5. Press “F3” to select automatic cycle. In this mode the servo can be run in the batch or continuous mode.
 A. Press F1 to select the batch mode. In the batch mode, the servo will feed each time it is commanded until the batch count reaches “0”, then the automatic cycle drops out.
 B. Press F2 to select the continuous mode. In the continuous mode, the servo will feed each time it is commanded until the command stops or the operator presses the “F4” return key.
The intent of this section is to familiarize the operator with the program flow and what to expect with every keypress. Each screen on the display will be reviewed with special comments to help clarify what is being asked on the screen. The program flow is broken down into 5 sections with the main menu being the home poistion.

The first screen to be displayed on the operator terminal will look like this

RAPID-AIR CORPORATION
4601 KISHWAUKEE STREET
ROCKFORD, IL 61109
815-397-2578

After a few seconds, the display will clear and the following display will appear:

MAIN SELECTION MENU
F1=JOB NUM F2=MANUAL
F3=AUTOMATIC CYCLE
F4=REVIEW PARAMETERS

SELECT F1=JOB #
The first step in programming the servo feed is to select a job number which will be used to store the parameters the operator inputs or recall the parameters which have been previously loaded into the servo controller program. When the operator selects F1 on the keypad, the screen will change to:

JOB # SELECTION MENU
ENTER IN NEW JOB #=XX
PRESS F4 KEY AFTER CORRECT # IS ENTERED

The operator must enter a 2 digit number before proceeding to any other function. If the job number the operator has entered has been previously stored in memory, or entering a new job, the following display will appear:

JOB NUMBER-01 LOADED
F1=PROGRAM PARAMETERS
F4=DON'T ALTER VALUES THAT ARE PROGRAMMED!

If entering in a new job then select (F1) “program parameters” and follow the directions.
The job number screen displays (2) choices for the operator. In the first choice, F1=Program new values, the operator can enter or change the, pilots, feed length, % of max speed and cut time. This then calculates the optimum speed of the material movement. The second choice, F4= Don’t alter values that are programmed, puts the job number entered in memory for running at this time. If F1 was selected the following display would appear.

```
FEED ADVISOR  JOB#=00
FEED LENGTH=000.000
CUT = .XXX % RATE=100
F4=EXIT FEED ADVISOR
```

This window is displayed during job setup calculations.

```
CALCULATING THE FEED
SPEED, ACCEL VALUES
PLEASE WAIT FOR MAIN
MENU TO BE DISPLAYED
```

Pressing the F4 key at any time returns you to the main menu.

```
MAIN SELECTION MENU
F1=JOB # F2=MANUAL
F3=AUTOMATIC CYCLE
F4=REVIEW JOB PROGRAM
```

In order to advance material into the die, using the servo feed, the operator has to be in the manual mode. Pressing the F2 on the keypad will cause the screen to change to the manual mode screen. (Cycle rolls with keys) - If the keypad has keys with open rolls or close rolls on it then the keys are active at this time and the rolls can be electrically released for inserting the material into the servo feed.

```
MANUAL MODE  F1=INCH
F2=SINGLE FEED MODE
F4=EXIT MANUAL MODE
CYCLE ROLL WITH KEYS
```

F1=INCH MODE
Pressing the F1 key will let the operator select a jog mode type, continuous or jog to length. In the continuous mode, the servo will run at a slow rate of speed until the button is released. In the jog to length mode, the servo will run at a slow rate of speed until the job number feed length is reached then it will stop. The key has to be released and depressed to jog again. Depressing the F2 key will direct the servo to feed forward and pressing the F3 key will direct the servo to feed in reverse.
Pressing the F4 key once will reset the program to the jog mode screen so that jog is now active. Pressing the F4 key twice will reset the program to the manual mode screen. If the F4 key was pressed twice then the following screen is displayed.

MANUAL MODE
- F1=INCH
- F2=SINGLE FEED MODE
- F4=EXIT MANUAL MODE
- CYCLE ROLL WITH KEYS

F2=SINGLE FEED

If the operator presses F2 then the following screen is displayed. The single feed mode is active and every time the F1 key is pressed then the feed will cycle and move the distance indicated on the feed length line.

JOB#=00 FL=000.000
- F1=FEED SINGLE LENGTH
- F2=CUT F3=SINGLE CYC
- F4=EXIT (SINGLE FEED)

Pressing F4 once resets the program to the manual mode display. Pressing the F4 key twice resets the program to the main menu display. If the F4 key was pressed twice the following screen is displayed.

MAIN SELECTION MENU
- F1=JOB # F2=MANUAL
- F3=AUTOMATIC CYCLE
- F4=REVIEW JOB PROGRAM

F3=AUTOMATIC CYCLE

You can now select between batch or continuous mode

SELECT CONTINUOUS OR BATCH CYCLE
- F1=BATCH
- F2=CONTINUOUS CYCLE
- F4=EXIT TO MAIN MENU

F2=CONTINUOUS
If the F2 key was pressed then the servo will be in the auto total mode and the following screen appears.

```
AUTOMATIC TOT=000000
JOB# =00    CUT=0.150
FL=000.000  SPEED=100
ACCEL=001%  F4=RETURN
```

Pressing the F4 key, stops the automatic cycle and the main menu screen appears.

```
MAIN SELECTION MENU
F1=JOB #  F2=MANUAL
F3=AUTOMATIC CYCLE
F4=REVIEW JOB PROGRAM
```

F3=AUTOMATIC CYCLE

If the feed has been properly set up, tested in manual, press electrically interlocked with feed, feed and pilot switches wired to the correct terminals, then pressing the F3 key will display the following screen.

```
SELECT CONTINUOUS OR BATCH CYCLE F1=BATCH
F2=CONTINUOUS CYCLE
F4=EXIT TO MAIN MENU
```

F1=BATCH

If the F1 key was pressed then the servo will be in the auto batch mode and the following screen appears.

```
BATCH SETTING=000000
BATCH COUNTER=000000
F1=RESET BATCH COUNT
F4=CONTINUE WITH COUNT
```

If F1 (reset batch count) is pressed then the batch count will be reset to it’s preset value. If F4 (continue with count) is pressed the batch count will remain at its present value. Either F1 or F4 will lead to the following screen.

```
AUTOMATIC BATCH=000000
JOB#=XX  CUT=0.XXX
FL=XXX.XXX  SPEED=XXX%
ACCEL=XXX%  F4=RETURN
```
Pressing the F4 key, stops the automatic cycle and the main menu screen appears. When the automatic screen is displayed, all keys except the F4 key are inactive. Every time the press cycles and trips the feed switch, the feed will cycle once per the parameters displayed on the screen. If the feed encounters excessive material drag while feeding or the material being moved encounters a restriction that stops the material forward movement then a servo fault can occur. If this happens then the following screen is displayed.

DRIVE FAULT OCCURED
NOTE TYPE OF FAULT—-
(xxx)

Example of fault - (2) = motor over temperature

Look up fault code printout listed in this manual.

To reset the fault, the master on-off switch has to be cycled which will reset the controller. The material path should be checked for obstruction and parallelism to the die. If all this seems to be satisfactory and another fault occurs the factory should be consulted.

MAIN SELECTION MENU
F1=JOB # F2=MANUAL
F3=AUTOMATIC CYCLE
F4=REVIEW JOB PROGRAM

The last section to be covered is the ramp/counters section. To get into this mode, press the ramp push-button and the following screen appears.

SELECT RAMP/COUNTERS
F1=BATCH/TOTAL COUNT
F2=ACCEL/DECEL RAMPS
F4=EXIT TO MAIN MENU

F1=BATCH/TOTAL COUNTS

Pressing the F1 key will bring up the batch/total screen, which is used for presetting the batch count or resetting the total count. The following screen appears.

BATCH COUNTER=000000
TOTAL COUNTER=000000
SET:F1=BATCH F2=TOT
F4=RETURN TO RAMP COUNT
Pressing the F1-batch counter key allows the operator to preset a batch count. Pressing the F2-total counter key resets the total count to zero. This cannot be undone so be sure that the counter should be reset to zero before pressing F2 key. Pressing the F4 key brings up the following screen.

```
SELECT RAMP/COUNTERS
F1=BATCH/TOTAL COUNT
F2=ACCEL/DECEL RAMPS
F4=EXIT TO MAIN MENU
```

The only section that has not been covered in this write-up is the ramp adjust mode. The ramp adjusts how fast the servo motor gets up to speed and how fast it stops. This feature is an asset that is seldom adjusted but can be a sure cure if material slippage seems to be a problem. With the main menu screen displayed the key labeled ramp is active. Pressing the ramp key produces this display.

```
RAMP PARAMETER MODE
F1=ACCEL% F2=DECEL%
F3=PERCENT MAX SPEED
F4=RETURN RAMP/COUNT

PRESS F1 OR F2
```

Pressing the F1 or F2 keys will produce one of the following displays. The lower the number entered, the longer the ramp cycle. Press F1 or F2 now.

```
ENTER IN %ACCEL RATE
MAX%=75000 RPM/SEC
MAX ACCEL%=XXX%
F4=EXIT %ACCEL MENU

ENTER IN %DECEL RATE
MAX%=75000 RPM/SEC
MAX DECEL% = XXX%
F4=EXIT %DECEL MENU
```

The ramp usually is factory set at .015 on the series 100 drives and .035 on the series 200 & 300 drives. There is some deviation to this when the factory runs the unit, but this is a basic starting point.
Every servo feed has an eccentric adjustment screw to adjust the upper roller to be in parallel to the lower roller. The maximum adjustment is .008” on the eccentric.

The adjustment screw is located behind the belt cover and is held fast by a 10-32 socket head cap screw. The actual adjustment screw is a slotted eccentric pin which is turned clockwise or counter-clockwise to raise or lower one end of the upper roll.

The parallel adjustment is factory set when the unit is manufactured but if material tracking seems to be a problem then this could be a way of solving the problem. To test if the rolls need adjustment, do the following.

1. Remove the front and rear roll covers.
2. Raise the anti-backup rolls. (If any) main rolls should be closed.
3. Shine a light from the rear of the feed toward the main rollers.
4. Inspect from the main rolls side to see if the rollers are parallel. If they are then the material could be the cause of the material walking. If they are not parallel then an adjustment has to be made.
5. To make the adjustment:
 a. Remove manual roll release arm by removing roll pin.
 b. Remove belt cover.
 c. Locate eccentric screw and loosen 10-32 screw.
 d. Turn slotted eccentric screw while viewing rolls until the rolls are parallel.
 e. Tighten 10-32 screw and reassemble parts, then retry running material.

For a more accurate adjustment use a feeler gage to check the parallelism.

This completes the eccentric adjustment write-up, if there are further questions, please call the factory.

* Before attempting to solve a possible roll parallelism problem by readjusting the rolls or calling the factory, perform the following test.
Step 1) A 3 to 5 foot length of material should be cut from the storage loop preceding the servo feed.
Step 2) Lay the material next to a straight line to see if the material is cambered. If it is then this could be the reason that the material is walking. If not, then turn the material upside down from the way it was being fed and insert into the feed. If the material walks in the opposite direction then the material could be to blame.
<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>No power indication</td>
<td>Disconnect off</td>
<td>Turn disconnect on</td>
</tr>
<tr>
<td></td>
<td>Blown fuse</td>
<td>Check/replace fuse</td>
</tr>
<tr>
<td></td>
<td>Master button in</td>
<td>Pull button out</td>
</tr>
<tr>
<td>No display on operators console</td>
<td>Program fault</td>
<td>Check lights on P.C.</td>
</tr>
<tr>
<td></td>
<td>Faulty wiring</td>
<td>Check plug on console</td>
</tr>
<tr>
<td>Power on-no motion</td>
<td>Program fault</td>
<td>Check lights on drive</td>
</tr>
<tr>
<td></td>
<td>Drive fault</td>
<td>Check lights on servo drive readout</td>
</tr>
<tr>
<td></td>
<td>Program error</td>
<td>Check parameters</td>
</tr>
<tr>
<td>No roll action</td>
<td>No air</td>
<td>Check air line</td>
</tr>
<tr>
<td></td>
<td>Low air pressure</td>
<td>Check air regulator</td>
</tr>
<tr>
<td>Material will not enter rolls</td>
<td>Anti-backup closed</td>
<td>Open rolls</td>
</tr>
<tr>
<td></td>
<td>Feed roll adjusting</td>
<td>Open adjustment</td>
</tr>
<tr>
<td></td>
<td>mechanism too close</td>
<td>mechanism</td>
</tr>
<tr>
<td></td>
<td>Material too thick</td>
<td>Check servo parameters</td>
</tr>
<tr>
<td>Material will not feed</td>
<td>Low roller force</td>
<td>Raise roller pressure</td>
</tr>
<tr>
<td></td>
<td>Oily material</td>
<td>Clean material</td>
</tr>
<tr>
<td></td>
<td>Program fault</td>
<td>Check parameters</td>
</tr>
<tr>
<td></td>
<td>Obstruction in die</td>
<td>Check die</td>
</tr>
<tr>
<td>Material feeds short</td>
<td>Accel to fast</td>
<td>Lower accel speed</td>
</tr>
<tr>
<td></td>
<td>Low roller force</td>
<td>Raise roller pressure</td>
</tr>
<tr>
<td></td>
<td>Oily material</td>
<td>Clean material</td>
</tr>
<tr>
<td></td>
<td>Obstruction in die</td>
<td>Check die</td>
</tr>
<tr>
<td></td>
<td>Feed signal to close to</td>
<td>Move feed signal input so</td>
</tr>
<tr>
<td></td>
<td>pilot release</td>
<td>rolls are closed to feed.</td>
</tr>
<tr>
<td>Material feeds long</td>
<td>High % max speed</td>
<td>Lower % max feed speed</td>
</tr>
<tr>
<td></td>
<td>Material slippery</td>
<td>Lower % Decell</td>
</tr>
<tr>
<td></td>
<td>Decell set too high</td>
<td>Lower % Decell</td>
</tr>
<tr>
<td>Material camber</td>
<td>High roller force</td>
<td>Lower roller pressure</td>
</tr>
<tr>
<td></td>
<td>Bad stock</td>
<td>Check stock at input for camber</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>CAUSE</td>
<td>REMEDY</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Material feeds off center</td>
<td>Edge guides not set properly</td>
<td>Set edge guides</td>
</tr>
<tr>
<td></td>
<td>Material not centered to feed</td>
<td>Center material</td>
</tr>
<tr>
<td></td>
<td>Bad Material</td>
<td>Try new roll of material</td>
</tr>
<tr>
<td>No automatic cycle</td>
<td>No press signal</td>
<td>Check limit switch</td>
</tr>
<tr>
<td></td>
<td>Controller fault</td>
<td>Check lights on drive</td>
</tr>
<tr>
<td></td>
<td>Servo fault</td>
<td>Check lights on drive</td>
</tr>
<tr>
<td></td>
<td>Program error</td>
<td>Check parameters on display</td>
</tr>
<tr>
<td>Servo squeals while</td>
<td>Servo velocity gain too high</td>
<td>Consult factory</td>
</tr>
<tr>
<td></td>
<td>Belt too loose or tight</td>
<td>Readjust belt tension</td>
</tr>
<tr>
<td>Fault signal on Pac-Sci</td>
<td>Servo fault</td>
<td>Recycle power</td>
</tr>
<tr>
<td>is displayed</td>
<td>Material jam</td>
<td>Check die</td>
</tr>
<tr>
<td></td>
<td>Power surge/failure</td>
<td>Check/recycle power</td>
</tr>
<tr>
<td>Cannot program unit from display</td>
<td>Program fault</td>
<td>Check Pac-Sci & call factory.</td>
</tr>
<tr>
<td></td>
<td>Data Instruments interface jumper loose</td>
<td>Check Data Instruments connection</td>
</tr>
<tr>
<td>Mechanical pilot release sticks down</td>
<td>Too much overtravel</td>
<td>Restrict travel of mechanical actuating arm</td>
</tr>
<tr>
<td></td>
<td>Broken spring</td>
<td>Remove plate and check springs</td>
</tr>
<tr>
<td></td>
<td>Needs lube</td>
<td>Remove plate and lubricate release bar</td>
</tr>
</tbody>
</table>
MOTOR SERVICE
The servo motor is flanged mounted and secured with four socket head cap screws. The motor removal has to be done in a sequence as described below.
1. The manual roll release handle has to be removed. The inner roll pin holds the handle to the shaft. Once this is removed the handle should slide off the shaft.
2. The belt guard has to be removed. It is fastened with four 1/4-20 socket head cap screws on the 100 & 200 servos and five 5/16-18 socket head capscrews on the 300B.
3. Remove the belt tension then remove the motor.
4. Install new motor and reassemble in reverse order of the previous instructions.
5. When reinstalling the belt, the tension on the belt should be 1/64” deflection per inch distance between the center lines of the pulleys using 1.5 to 2 lbs. force to cause the deflection. The best way is to tension the belt and try running the servo for a few cycles. If you get a high vibration on the belt when the feed stops then you have to readjust the belt tension. It will have to have more or less tension to stop the vibration of the belt.

MANIFOLD ASSEMBLY
The manifold assembly was designed to give the customer easy access to the components. The valve for the electric roll release and if supplied, the anti-backup valve is mounted on the side of the feed. The air regulator and pressure gauge is mounted on the input side of the feed. All can be easily replaced if needed.

ROLLER AND GEAR BOX ASSEMBLY
At this stage of disassembly, all field maintenance components are exposed and easily accessible. No further field service should be necessary on the roller and gear box assembly unless the gear train is suspected of a malfunction. The drive rolls should be checked for erroneous wear pattern while they are exposed and cleaned before reassembly.

MAINTENANCE PROCEDURES

<table>
<thead>
<tr>
<th>DAILY</th>
<th>WEEKLY</th>
<th>MONTHLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wipe off feed rolls</td>
<td>Check wear pattern of rolls</td>
<td>Check oil level</td>
</tr>
<tr>
<td>Clean any dirt from servo unit</td>
<td></td>
<td>Check cables for cuts or wear</td>
</tr>
<tr>
<td>Clean any dirt from operators pendant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SERVO FAULT DISPLAY

The Pacific Scientific drive has a list of internal faults and displays the number of that fault on its readout located on the front of the drive. Rapid Air now displays the fault on the keypad display. If a fault occurs the screen will display the number and the name of the fault, but there will not be an explanation accompanying the fault. This is a tool to help you to trouble shoot if the servo fails to perform when commanded.

If a fault was displayed the servo controller will have to be turned off and restarted to clear the fault. If the fault is still present when the Pacific Scientific unit is restarted, the fault may not be displayed on the keypad screen as the fault will not let the internal program restart. The control panel will have to be opened to view the fault again.

A list of probable faults and some explanation is included in this section. If more help is required, then Rapid Air will have to be contacted.
FAULT CODE
(Predefined Variable, Integer, Status Variable, Read-Only)

Guidelines - 0 means the drive is not faulted and not enabled, while 8 means the drive is not faulted and enabled. Alternating 8.> means actively inhibiting CW motion and alternating 8.< means actively inhibiting CCW motion.

<table>
<thead>
<tr>
<th>STATUS LED</th>
<th>VALUE</th>
<th>FAULT MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Blinking) 1</td>
<td>1</td>
<td>Velocity feedback (VelFB) over speed</td>
</tr>
<tr>
<td>(Blinking) 2</td>
<td>2</td>
<td>Motor Over-Temp</td>
</tr>
<tr>
<td>(Blinking) 3</td>
<td>3</td>
<td>Drive Over-Temp</td>
</tr>
<tr>
<td>(Blinking) 4</td>
<td>4</td>
<td>Drive I*t</td>
</tr>
<tr>
<td>(Blinking) 5</td>
<td>5</td>
<td>1-n Fault (9x3)</td>
</tr>
<tr>
<td>(Blinking) 6</td>
<td>6</td>
<td>Control ±12 V supply under voltage</td>
</tr>
<tr>
<td>(Blinking) 7</td>
<td>7</td>
<td>Output over current or bus over voltage</td>
</tr>
<tr>
<td>(Blinking) 9</td>
<td>9</td>
<td>Not Assigned</td>
</tr>
<tr>
<td>(Blinking) A</td>
<td>10</td>
<td>Bus OV detected by DSP</td>
</tr>
<tr>
<td>(Blinking) b</td>
<td>11</td>
<td>Auxiliary +5V Low</td>
</tr>
<tr>
<td>(Blinking) C</td>
<td>12</td>
<td>Not assigned</td>
</tr>
<tr>
<td>(Blinking) D</td>
<td>13</td>
<td>Not assigned</td>
</tr>
<tr>
<td>(Solid) E*</td>
<td>14</td>
<td>Processor throughput fault</td>
</tr>
<tr>
<td>(Blinking) E*</td>
<td>14</td>
<td>Power Up Self Test Failure</td>
</tr>
<tr>
<td>(Alternating) E1</td>
<td>225</td>
<td>Bus UV, Bus Voltage VBUS\text{THRESH}</td>
</tr>
<tr>
<td>(Alternating) E2</td>
<td>226</td>
<td>Ambient Temp Too Low</td>
</tr>
<tr>
<td>(Alternating) E3</td>
<td>227</td>
<td>Encoder commutation align failed (Only CommSrc=1)</td>
</tr>
<tr>
<td>(Alternating) E4</td>
<td>228</td>
<td>Drive software incompatible with NV memory version</td>
</tr>
<tr>
<td>(Alternating) E5*</td>
<td>229</td>
<td>Control Card hardware not compatible with drive software version</td>
</tr>
<tr>
<td>(Alternating) E6</td>
<td>230</td>
<td>Drive transition from unconfigured to configured while enabled</td>
</tr>
<tr>
<td>(Alternating) E7</td>
<td>231</td>
<td>Two AInNull events too close together</td>
</tr>
<tr>
<td>(Alternating) F1</td>
<td>241</td>
<td>Excessive Position Following Error</td>
</tr>
<tr>
<td>(Alternating) F3</td>
<td>243</td>
<td>Parameter Checksum Error (Memory Error)</td>
</tr>
</tbody>
</table>

*FaultReset cannot reset these faults.
See ExtFault for further information on Blinking E, Blinking 1 and Alternating F3.
REASSEMBLY OF UNIT
Prior to assembly, attention must be given to three points of contact that require an application of Moly-Cote, Lubriplate or other suitable heavy grease. The three points are:
1. The antibackup piston which is located at the feed entrance.
2. The main roll piston and the spiral pins in the main roller tie plate which can be seen by viewing straight down through the center of the feed at approximately half way from the inlet to the exit roller. The piston is positioned horizontally at the base of the feed and approximately in the center of the feed if viewing from the gear box to the belt cover.
3. The mechanical roll release shaft located at the exit side of the feed. Three screws have to be removed and then the keeper plate can be removed. The inner shaft should be thoroughly greased to prevent sticking.
Do not apply excessive grease as it may fall onto the drive rollers and cause misfeeding due to material slippage. All bearings are sealed and need no additional lubrication.

LUBRICATION
The gear box oil must be kept up to sight gauge level and changed after every 2000 hours of use. Recommended oil is Mobil #SHC630 or equivalent. The oil reservoir capacity is 3.5 oz. The oil can be drained by removal of the drain plug located near the base of the gear housing cover, just below the sight gauge. The oil reservoir is filled through the pipe thread port occupied by the air breather plug near the upper edge of the gear housing cover.

NOTE: THE ORIGINAL BREAK-IN OIL IN THE GEAR BOX SHOULD BE CHANGED AFTER 100 HOURS OF CYCLE TIME AND EXAMINED FOR CHIPS OR FOREIGN MATTER. REPLACE THE BEAR BOX OIL PER INSTRUCTIONS.

The anti-backup rollers have been lubricated at the factory and should need no further attention. If they are found to slip in the reverse direction, consult the factory for further assistance.

PINCH ROLL & ANTI-BACK UP ACTUATING PISTONS
Periodically grease with lubriplate or equivalent grease to anti-backup & pinch roll actuating piston nose where it contacts the pressure plate.
PRECAUTIONS & SAFETY

NEVER - Put screwdrivers or foreign materials in feed rolls

NEVER - Hold onto material as it is being fed through the servo

NEVER - Wear neckties around the servo feed rolls

NEVER - Force the rolls open by prying on them

NEVER - Modify the mechanical aspects of the servo feed

CAUTION - Contact the factory before drilling any holes in the unit

CAUTION - Wear proper eye protection when working around the servo

CAUTION - Do not wear loose clothing around the servo feed rolls
WARRANTY

ALL SALES BY THE COMPANY ARE MADE SUBJECT TO THE FOLLOWING TERMS AND CONDITIONS. PLEASE READ.

WARRANTY - The Company warrants, for a period of one year from date of shipment by the Company, that the product shipped is free from defects in material and workmanship. THIS WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL IMPLIED WARRANTIES IN LAW, INCLUDING MERCHANTABILITY. The Company obligation under this warranty is limited to repairing or replacing, F.O.B. Madison, SD, any part or parts proved to have been defective when shipped. In no event shall the Company be liable for special or consequential damages. Provisions set forth in specifications are descriptive and subject to change and are not intended as warranties.

CUSTOMER LICENSE AGREEMENT

The RAPID-AIR CORPORATION reserves the rights in its software. The software program is licensed by RAPID-AIR to the original purchaser of the equipment which contains the software for use only on the terms set forth in this license.

You may use the program only on the programmable servo computer furnished with the system and only in conjunction with the servo feed supplied with the system.

You may not without expressed permission from Rapid-Air:
A. Copy, distribute, or document the program for others.
B. Modify or merge any portion of the program for use on non compatible hardware.
C. Make alterations to the program.
CENTER OF MECHANICAL PILOT RELEASE

MECH. PILOT RELEASE
1 3/4 MAX. STROKE

3/8-16 MOUNTING HOLES (4)
HOLE PATTERN "A" FOR 4' UNIT
HOLE PATTERN "B" FOR ALL OTHER UNITS

RAPID-AIR 100 SERIES
BELT DRIVE SERVO
KEYPAD SHOWN WITH ALL OPTIONS LEFT 2 ROWS MAY VARY DEPENDING ON OPTIONS PURCHASED.
CUTTER MAINTENANCE

SMALL CUTTER
CUTTER DATA: See specific cutter specifications.

OPERATIONS:
The solenoid valve, which is remote mounted, is attached to the cutter (item #3) by a plastic hose and advances the cutter into the material. Compression springs return the blade to the raised position. The cutter raised position is monitored by a proximity switch mounted on the rear of the cutter (item4).

ADJUSTMENTS:
The cutter blade may be lowered manually by pushing down on the head of the cutter. The upper half of the cutter is attached to an adjustable slide. The cutter clearance can be adjusted by loosening 2 screws (item #1) and rotating the hex nuts (item #2). To adjust, loosen one side and tighten the opposite side corresponding to the side you want to adjust in order to line up the blades. Retighten the top screws (item #1). When greasing, use Mobilux No. 2 or equivalent.

LARGE CUTTER
CUTTER DATA: Material Opening Item #1; See specific cutter specifications.

OPERATIONS:
The solenoid valve (item #2) advances the cutter into the material and the compression springs return the blade to the raised position.

ADJUSTMENTS:
The blade may be lowered manually with an eccentric cam screw (item #6) located on the upper blade assembly just under the solenoid valve.
The lower half of the cutter is attached to an adjustable slide (item #3). The cutter clearance is adjusted by loosening (2) hex screws (item #4) on the adjusting slides and turning (2) knurled knobs (item #5) to move the lower blade horizontally in & out.